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ABSTRACT

We present the results of a Monte Carlo Study of the power

of a new multivariate goodness-of-fit test.

INTFRODUCT ION

Fout: [11 developed a new test of goodness-of-fit for multi-

variate distributions. The test can also be used to fit univariate

li•L i $Inl an earlier paper [I the authors compared the

Pout: test with the Chi-square and Kolmogorov-Snirnov test. hle

results indicated that the Pout: test is more powerful in detecting

certain characteristics than the other two tests. this paper deals

with the performance of the test when fitting multivariate distri-

butions. More specifically we-iwAP6*g&" the power of the test

when fitting bivariate and trivariate normal distributions for ,,

various choices of the mean vector and the covariance matrix/5 in

the second section w sent~a brief description of the Fout:

test; a discussion of the simulation procedure is in the third sec-

tion and the results of the simulation are in the final section.
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THE FOUTrZ TEST

Let X ,  be a random sample of size n-i from a

* p-variate continuous distribution. The first step of the Foutz

test is to divide the sample space into n statistically equivalent

blocks nB,,... '3n and then determine a "continuous empirical
distribution function (CEDF)" Hn. The test statistic for the hypo-

thesis that the true c-d-f is H is
F = Sup I P( ) -P(s) 1)
n all events n

where Pn (a) and PH(B) are the empirical and hypothesized probabi-

lity measures of an event 8, computed from Hn and H respectively.

An equivalent computational formula for F is
n

n
F max [0,j- D i" ' n i = l

where D. = P[X ZBJiH].

A general procedure for the construction of statistically equi-

valent blocks is the following. Select n - 1 "cutting functions"

hk(X), k = 1, 2,... ,n-l, such that hk(X) has a continuous distri-

bution, and a permutation k1 ,k2,...,k n 1 of the integers 1,2,...,n-1.

Order the samples X1 according to the value of hik (X,); let X(k be

the vector associated with the klth order statistic. Partition the

sample space into two blocks B1 and B, defined by
iI

*i B ={X: hk (X) hk [X(k I)1} and B, = Bc

At the second step, if k2 < kl, order the k1 sample vectors in B1
according to hk1(X) and let X(k2) be the k2th order statistic. Par-

tition BI into two sub-blocks 8l and BI; at this stage the sample

space is partitioned into three blocks BII, B1 and B,0 = B,. If

k, > k1 , order the n- 1- k sample values in the block B,
according to hko,(X). Let Xk 2) be the (k- kl)th -rder statistichki. ~ , b he(-



and partition the block B2 into two sub-blocks B.1 and B.,; take

B10 , B1 . Continue the process until all the cutting functions a-e

exhausted; this results in a partition of the sample space into n

statistically equivalent blocks sl, 8,,..., sn" ' bre details on

the procedure and some examples are available in [3].

The null c-d-f of the test statistic Fn (necessary to deter-

mine the critical values) is quite difficult to derive even for

small n; for n = 3, 4, 5 formulas for the exact c-d-f are in [2].

Foutz proposed a large sample normal approximation with mean

e- Iand a' - (2e" - Se-2)/n. In our earlier study [21 we found

that with this approximation the observed significance level is

about 10-20% smaller than the nominal values for sample size n - 1 =

20, 30, 50. We therefore proposed the use of empirically generated

(based on 80,000 simulated Fn values) critical points in Table I

below.

TABLE I. ENIPIRICAL CRITICAL VALUES FOR FOUTZ TEST

Sample Size 20 30 50

Significance level

.10 .42714 .41903 .40816

.05 .44865 .43533 .42116

.01 .48659 .46579 .44487

We have also generated a variation of the large sample normal

approximation to calculate more accurate estimates of the critical

values. We are presently in the process of using this approxima-

tion to generate tables for a spectrum of critical values and

sample sizes.

SIMJLAT ION PROCEDURE

To investigate the power of the Foutz test 5,000 replicates

each of samples of size 20 from several bivariate and trivariate

3



normal distributions were generated; in all cases the hypothesis

tested was that the samples are from a bivariate/trivariate normal

distribution with zero mean vector and covariance matrix the Iden-

tity. The true values of the means, variances and covariances for

the generated samples were chosen so as to study the effect of

(i) shifts in the means only (ii) shifts in the variances only

(iii) shifts in covariances only and few cases involving a combina-

tion of all three.

The method of blocking we implemented was as follows. We let

the samples themselves implicitly determine the permutation kl, k2,

k and the order of the cutting functions which were all

taken to be coordinate functions i.e., hk (X) = X(i) the ith coordi-

4nate of the sample vector X, for some i. JThe following example

with p - 2 (bivariate samples) will illustrate the procedure. Sup-

pose x1 , x2 ' ..., xi are the observed sample vectors. The first

cut on the p-dimensional sample space is made at x I) the first

coordinate of the first sample vector x1 . This partitions the sam-

, ple space into two blocks BI, B2 defined by

I st coordinate 2nd coordinate
( 1)

B2  (1)

The second sample vector i2 will be in one of the two blocks

B1 or B,. Assume that it is in B2; partition B2 into two sub-blocks

Ist coordinate 2nd coordinate

((2).[ B22 (x 1), +) (Ex 2 ,)

L'



where is the value of the second coordinate of the sample

vector x2. At this stage the sample space is partitioned into

three blocks and B Continuing this process (letting:. b21 21d th (r) th
the cutting function at the q stage to be x the r coordinate-(I

of the x where r = [ (q-l) mod p + 1] ) until all the sample vec-
tors are exhausted will result in a partition of the sample space

into n statistically equivalent blocks. In our simulation we

used both rectangular and polar/spherical coordinates to examine

if one scheme is more adept at detecting certain types of violations

of the null hypothesis, When using spherical coordinates the first

coordinate is taken to be the radius vector (same for polar coordi-

nates), the second coordinate is the angle in the horizontal plane

and the third coordinate is the angle measured from the vertical axis.

Figures 1 and 2 granhically demonstrate the construction of the

blocks for five bivAriate samples using the rectangular and polar

coordinate systems. The implicit permutation and the order of the

coordinate cutting .'unctions are also included in the figures. It

should be noted tha: for polar/spherical coordinates it is necessary

to make an additiontl initial cut, which we took at 8 = 00.

The probability contents of the statistically equivalent blocks

under the null hypothesis (multivariate normal with Zero mean vector

and covariance matrix the Identity) are easily computable as products

of univariate probabilities (normal, Chi square and uniform) for the

rectangular coordinate system as well as the polar/spherical coordi-

nate system.

RESULTS

For ease of comprehension, the results for shifts of mean or

variance/covariance are given as power curves in Figures 3 - 7.

All power curves are based on 5,000 replications at the .05 signi-

ficance level. The results are indicative of those obtained for

significance levels of .01 and .1. Full details are available in



Linhart [3].

Shifts in mean are detected well. Figures 3 and 4 show that a

shift of one standard deviation in the mean results in about a 60%

rejection rate for both bivariate and trivariate samples. The

rectangular method of blocking consistently resulted in a higher

rejection rate than did the polar/spherical method.

Power curves for shifts in variance are given in Figures 5 and

6. Small shifts in variance are not detected very well, but larger

shifts and shifts in more than one component resulted in higher

rejection rates. Neither blocking method produced rejection rates

significantly better than the other except in the trivariate case

when one variance was shifted. In general, the polar/spherical

method of blocking gives slightly higher rejection rates, but not

consistently.

The power curves for shifts in covariance are given in Figure

7. Except for highly correlated data, neither blocking scheme

detects these shifts very well. The polar/spherical method of

blocking usually gives somewhat higher rejection rates than the

rectangular method.

To test for possible confounding in detection of shifts in

both mean and variance/covariance, we made the series of runs

listed in Tables II and III. Shifts are generally of increasing

amount as one looks down and to the right in the tables. It is

also true that rejection rates increase as one looks down and to

the right, indicating there is no detectable confounding. The

rectangular method of blocking generally gave better results with

multiple shifts.

All of the above restlts are based on a sample size of 20 and

significance level of .0S. To determine possible trends over sample

size or significance level we made the series of runs given in

Tables IV and V. Larger sample sizes generally led to higher rejec-

tion rates, as is to be anticipated. Violations of this did occur

6
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when rejection rates were close to the significance level, i.e.,

the shift was not detected very well. The rectangular blocking

method generally gave higher rejection rates.

In conclusion, the Foutz test is adept at detecting shifts in

mean, less powerful at detecting shifts in variance, and poor ii.

detecting correlated variates unless they are highly correlated.

In addition, shifts in mean are not disguised when a shift in

variance/covariance is also present.
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TABLE II

IEJECTION RATES FOR INJLTIPLE SHIFTS IN
MEAN AND VRIANCE-COVARILNCE

.05, n 21*

Sigma (1 0) (1 6) (2 0) (. 849) (53 1.34)

Mean

(0) .0488 .0912 .1986 .2500 .9bS8
.0482 .1176 .1522 .162 .9572

(.5 .1710 .2398 .3110 .3702 .9720
0/ .1388 .2482 .2498 .3402 .9650

(i) .5606 .7346 .6384 .6828 .9820
.4348 .5952 .5334 .6316 .9-64

(i) .9418 .8774 .9350 .8658 .9892
1 .8S76 .8588 .8722 .8308 .9840

(2 .9998 .9998 .9902 .9950 .9990
0 .9950 .9990 .9772 .9882 .9964

* First Entry - Rectangular coordinate blocking
Second Entry - Polar coordinate blocking

15



TABLE III

REJECTION RATES FOR NULTIPLE SHIMTS IN

MEAN AND VARIANCE-COVARLANCE

a O.5, n = 21*

Sigma 1 00 10 .6 5 0 0 10 0. 5000 1 0) (( 1:i0 10 1 0 0 1 0 .0 1 0 0 5 0
S0 0 1 .6 0 1 0 0 1 .95 0 1 0 0 5

Mean

(0) .0440 .0674 .5392 .7828 .9770
S.0518 .0582 .4584 .7840 .9720

1.5 \ .0480 .1830 .S708 .7946 .9832

0 .0280 .1176 5034 .8020 .9740

(1) .3728 .6352 .6852 .8206 .9888
.1174 .2912 .6254 .8422 .9824

0

(1) .7400 .9074 .9270 .9668 .9930
1.7392 .74S4 .8602 .9454 .9870

0

0 .9726 .9752 .9742 .9774 .9976

* First Entry - Rectangular coordinate blocking

Second Entry - Polar coordinate blocking

F 1.6
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TABLE IV

REJECTION RATES FOR INCREASING SAM4PLE SIZES

Sample size (n-1) 20 30 so

Shift .01

u = (.5 .0574 .0860 .1270
0 .0430 .0564 .0754

U= (. 1294 .2026 .3652.5.1.30 .141 .2So
1 02 .) . 2 .0140 .0176
.3 1 .0136 .0152 .0170

Q ( 0) .1864 .2722 .4522
0 31.1578 .2244 .3744

= .05

u= (.5) .1710 .2170 .2914
0 .1388 .1630 .2238

u= (.5) .3024 .4144 .6030
.5 .3164 .3076 .4826

= (1 .3 .0576 .0624 .0728
3 11 0656 .0624 .0760

3 1 0 .3786 .4884 .6756
0 .:3342 .4304 .6016

. .10

= (. ) .2700 .3228 .456
S0/ 2298 .26S8 .3400

u (5k.4406 .5424 .7190
.4S34 .43.56 .6066

/ (1 .3\ 1118 .1174 .1396
\3 1 ~ :1258 .1196 .1422

Z (1 0\ .5150 .6132 .7900
0 3 .4640 .5566 .7160

------ ° ----- °--- .....--- ...- . --.- - . ..... -.---- -. -°.°°. o --

First Entry - Rectangular coordinate blocking
Second Entry - Polar coordinate blocking

17



TIABLE V

RF.J-ELTION RATES FOR INCREASING SAMPLE SIZES

Sample size (n-i) 20 30 50

Shift a = .01

U /.5\ .0480 .0680 .1036
0 .0280 .0362 .0526

Li . (S \.1738 .2932 .5040) .0848 .1662 .3428

r£ /1 0 .3\ .0106 .0138 .0148
0 I 0) .0124 .0134 .0144
3 0 1

r 1 ( 3 0 0\ .1606 .2054 .3528
0 1 0) .0838 .1138 .20800 0 1

a = .05

u = 1.5\ .1438 .1974 .2742
0o) .1036 .1256 .1646

U 1 .5 \.3642 .5118 .7268
.5) .2198 .3588 .5868
.5

Z (.1 0.3) .0468 .0588 .0656
S la ) • 0512 .0488 05403 1 ,1

Z / 3 0 0\ .3438 .3976 .5734
0 1 ) .2074 .2708 .41260 0 9 1

a- .10
.5\ .2484 .3024 .3876

O).1874 .2132 .2650

u= /.\.4948 .6396 .8272
) .3584 .4912 .7040

.5
" , 0 .0972 .1142 .123:'

0 0) .1086 .1030 .1102•.3 0 1

r /3 0 O\ .4736 .5264 .D880
0 1 0 .3156 .3880 .5450
0 0 1

First Entry - Rectangular coordinate blocking
Second Entry - Polar coordinate blocking
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